Skip to main content

GBS (GUILLAIN BARRE SYNDROME)

 Introduction:

Guillain Barre Syndrome(ghee-yan-bar syndrome) also known as landry's palsy is a classic lower motor neuron disorder. It is a reactive self limited auto-immune disease in which the body's immune system attacks part of the peripheral nervous system and which presents as acute generalized weakness.
It is referred to as a syndrome because it represents a broad group of demyelinating inflammatory poly radiculo-neuropathies.
GBS can also be classified in the following categories:

  1. AIDP (Acute inflammatory demyelinating polyneuropathy): the immune response damages the myelin coating and interferes with the transmission of nerve signals.
  2. Axonal can be further classified into:
    • Acute motor axonal neuropathy (AMAN)
    •  Acute motor sensory axonal neuropathy (AMSAN)
      In the above two, the axons themselves are damaged by the immune response.
  3. Miller Fisher Syndromes is a rare, acquired nerve disease that is a geographically variable variant of GBS observed in about 1% to 5% of all GBS cases in Western countries yet up to 19% and 25% in Taiwan and Japan respectively.

Etiology:

The Guillain-Barre syndrome (GBS) and its variants are considered post-infectiousimmune-mediated neuropathies. Evidence from animal models suggests a key role of molecular mimicry. In Campylobacter jejuni gastrointestinal infections, a lipooligosaccharide present in the outer membrane of the bacteria is similar to gangliosides that are components of the peripheral nerves. Therefore, an immune response triggered to fight infection can lead to a cross-reaction on host nerves.

Many infections have been linked with GBS. The most common are gastrointestinal or respiratory illnesses. Up to 70% of patients have reported an antecedent illness in the 1 to 6 weeks before the presentation of GBS. During the Zika virus outbreak, many GBS cases were described and the results of this study indicate GBS pathophysiologic mechanisms that may be more common after Zika infection. Case reports detail many other possible etiologies linked to GBS including medications and surgeries.

Pathology:

The pathophysiology of GBS is complex. GBS is considered to be an autoimmune disease triggered by a preceding bacterial or viral infection. Campylobacter jejuni, cytomegalovirus, Epstein-Barr virus and Mycoplasma pneumoniae are commonly identified antecedent pathogens.

In the acute motor axonal neuropathy (AMAN) form of GBS, the infecting organisms probably share homologous epitopes to a component of the peripheral nerves (molecular mimicry) and, therefore, the immune responses cross-react with the nerves causing axonal degeneration; the target molecules in AMAN are likely to be gangliosides GM1, GM1b, GD1a and GalNAc-GD1a expressed on the motor axolemma. In the acute inflammatory demyelinating polyneuropathy (AIDP) form, immune system reactions against target epitopes in Schwann cells or myelin result in demyelination; however, the exact target molecules in the case of AIDP have not yet been identified. 

The body's immune system begins to attack the body itself, The immune responses causes a cross-reaction with the neural tissue. When myelin is destroyed, destruction is accompanied by inflammation. These acute inflammatory lesions are present within several days of the onset of symptoms. Nerve conduction is slowed and may be blocked completely. Even though the Schwann cells that produce myelin in the peripheral nervous system are destroyed, the axons are left intact in all but the most severe cases. After 2-3 weeks of demyelination, the Schwann cells begin to proliferate, inflammation subsides, and re-myelination begins.



While GBS is the most common cause of acute paralysis, the exact pathogenesis is still unclear. The progression of demyelination appears different in AMAN type of GBS versus AIDP type. Nadir is the point of greatest severity and patients with AMAN type reach it earlier.

Clinical Presentation

The typical patient with GBS presents 2-4 weeks following a relatively benign gastrointestinal or respiratory illness with complaints of finger dysesthesias and proximal muscle weakness of the lower limbs. The weakness may progress over hours to days to involve the arms, trunk, cranial nerves, and muscles of respiration. Variants of GBS may present as pure motor dysfunction or acute dysautonomia. a. “Typical” 'GBS is an acute, predominantly motor neuropathy involving distal limb paresthesias, relatively symmetric leg weakness, and frequent gait ataxia.

  • Most cases will have subsequent arm weakness, and possibly the weakness of facial, ocular, and oropharyngeal muscles.
  • Weakness is always bilateral, although some asymmetry in onset and severity is common.
    • Proximal muscle weakness very frequent, especially initially, with subsequent distal arm and leg weakness.
    • GBS with a descending pattern of weakness seen in 14% cases; onset initially with cranial nerve or arm muscle weakness, followed by leg weakness.
    • In 1/3 of cases, the degree of weakness in the arms and legs is roughly equal.
  • Reduced or absent reflexes characterize GBS.
    • Early loss of reflexes may be due to desynchronization of afferent impulses in reflex arc due to non-uniform demyelination.
    • About 70% of patients present with loss of reflexes; less than 5% retained all reflexes during the illness
    • The presence of intact reflexes should suggest an alternative diagnosis other than GBS.
  • Sensory disturbance
    • 50% will present with symmetric distal limb paresthesias, before clinically evident limb weakness. Early finger paresthesias suggest a patchy process, unlike the pattern seen with distal axonopathies.
    • Paresthesias of trunk or face unusual, but sensory loss over the trunk frequent and a psuedolevel may be evident
    • Beware if definite sensory level present as this may suggest structural cord disease
  • Dysautonomia
    • Occurs in about 65% of cases
    • More frequent in patients with severe paralysis and ventilator difficulties but may develop in mild cases.
    • Most common manifestations include cardiac dysfunction such as sinus tachycardia, sinus bradycardia, sinus arrest and other supraventricular arrhythmias, paroxysmal hypertension, and hypotension (especially postural),
    • ICU monitoring necessary because of possible cardiac complications.
    • Other features: ileus, urinary retention (1/4 cases), inappropriate ADH, altered sweating, mild orthostatic hypotension.


  • Cranial nerve involvement is observed in 45-75% of patients with GBS. Cranial nerves III-VII and IX-XII may be affected. Common complaints include:
    • Facial Palsy
    • Diplopia
    • Dysarthria
    • Dysphagia
    • Ophthalmoplegia
    • Pupillary disturbances
    • Facial and oropharyngeal weakness usually appears after the trunk and limbs are affected. The Miller-Fisher variant of GBS is unique in that this subtype begins with cranial nerve deficits.

Differential Diagnosis

  • Acute peripheral neuropathies
    • Toxic: thallium, arsenic, lead, n-hexane, organophosphate
    • Drugs: amiodarone, perhexiline, gold
    • Alcohol
    • Porphyria
    • Systemic vasculitis
    • Poliomyelitis
    • Diphtheria
    • Tick paralysis
    • Critical illness polyneuropathy
  • Disorders of Neuromuscular Transmission
    • Botulism
    • Myasthenia gravis
  • Central Nervous System Disorders
    • Basilar artery occlusion
    • Acute cervical transverse myelitis

Diagnostic Procedures

These include:

  • Cerebrospinal fluid investigation: It will elevated at some stage of the illness but remains normal during the first 10 days. There may be lymphocytosis (> 50000000 cells/L).
  • Electrophysiological studies: it includes nerve conduction studies and electromyography. They are normal in the early stages but show typical changes after a week or so with conduction block and multifocal motor slowing, sometimes most evident proximally as delayed F-waves.
    The only way to classify a patient as having the axonal or nonaxonal type is electrodiagnostically.
  • Further investigative procedures can be undertaken to identify an underlying cause
    For example:
    • Chest X-ray , stool culture and appropriate immunological tests to rule out the presence of cytomegalovirus or mycoplasma
    • Antibodies to the ganglioside GQ1b for Miller Fisher Variant.
  • MRI
  • Lumbar Puncture: Most, but not all, patients with GBS have an elevated CSF protein level (>400 mg/L), with normal CSF cell counts. Elevated or rising protein levels on serial lumbar punctures and 10 or fewer mononuclear cells/mm3 strongly support the diagnosis.

Prognosis

Guillain-Barré syndrome can be a devastating disorder because of its sudden and unexpected onset. In addition, recovery is not necessarily quick. As noted above, patients usually reach the point of greatest weakness or paralysis days or weeks after the first symptoms occur. Symptoms then stabilize at this level for a period of days, weeks, or, sometimes, months. The recovery period may be as little as a few weeks or as long as a few years. About 30 percent of those with Guillain-Barré still have a residual weakness after 3 years. About 3 percent may suffer a relapse of muscle weakness and tingling sensations many years after the initial attack.

Guillain-Barré syndrome patients face not only physical difficulties but emotionally painful periods as well. It is often extremely difficult for patients to adjust to sudden paralysis and dependence on others for help with routine daily activities. Patients sometimes need psychological counselling to help them adapt.

Main likely predictors of prognosis in Guillain Barre´syndrome: derived from findings of prospective literature of studies including a majority of treated patients are:

CategoryPredictors
ClinicalAge >40 or 50 years

Reduced vital capacity

Need for mechanical ventilation

Preceding diarrhoea

Low MRC Sum Score at admission

Low MRC Sum Score at day 7 postadmission

Short interval between weakness onset

and admission

Facial and/or bulbar weakness

ElectrophysiologicalInexcitable nerves

Low summated distal compound muscle action

potential <20% of lower limit of normal

BiologicalNone of definite value

More confirmatory studies required

Management

There is no known cure for Guillain-Barré syndrome. However, there are therapies that lessen the severity of the illness and accelerate the recovery in most patients. There are also a number of ways to treat the complications of the disease.

Medical Management

The mainstay of medical management of patients with GBS is include:

Plasmapheresis

In plasmapheresis, blood is removed from the body, the red and white blood cells are separated from the plasma and only the blood cells are returned to the patient. It is thought that removing the plasma eliminates some of the immune factors that are responsible for the disease progression. Plasmapheresis helps in following ways:

  • Reducing the length of the illness
  • Shortened time on mechanical ventilation
  • Early ambulation

Intravenous immunoglobulins ( I.V.I.G)

Immunoglobulins are given intravenously which shows a positive impact on the speed of recovery. But it has been shown to be less effective than plasmapheresis.

Further Medical Management Can Be Done According to the Symptoms and the Complications

  • Supportive Care
    • ICU monitoring
    • Basic medical management often determines mortality and morbidity.
  • Ventilatory Support
    • Atelectasis leads to hypoxia.
    • Hypercarbia later finding; arterial blood gases may be misleading.
    • Vidal capacity, tidal volume and negative inspiratory force are best indicators of diaphragmatic function.
    • Progressive decline of these functions indicates an impending need or ventilatory assistance. Mechanical ventilation usually required if VC drops below about 14 ml/kg; ultimate risk depending on age, the presence of accompanying lung disease, aspiration risk, and assessment of respiratory muscle fatigue.
    • Atelectasis treated initially by incentive spirometry, frequent suctioning, and chest physiotherapy to mobilize secretions.
    • Intubation may be necessary for patients with substantial oro-pharyngeal dysfunction to prevent aspiration.
    • Tracheostomy may be needed in patients intubated for 2 weeks who do not show improvement.
  • Autonomic Dysfunction
    • Autonomic dysfunction may be self-limited; do not over-treat.
    • Sustained hypertension managed by angiotensin-converting enzyme inhibitor or beta-blocking agent. Use short-acting intravenous medication for labile hypertension requiring immediate therapy.
    • Postural hypotension treated with fluid bolus or positioning.
    • Urinary difficulties may require intermittent catheterization.
  • Nosocomial Infections Usually Involve Pulmonary and Urinary Tracts.
    • Occasionally central venous catheters become infected.
    • Antibiotic therapy should be reserved for those patients showing clinical infection rather than colonization of fluid or sputum specimens.
  • Venous Thrombosis Due to Immobilization Poses a Great Risk of Thromboembolism
    • Prophylactic use of subcutaneous heparin and compression stockings. 

Physiotherapy Management 

Aims of physiotherapy management are:

  1. Regain the patient's independence with everyday tasks.
  2. Retrain the normal movement patterns.
  3. Improve patients posture.
  4. Improve the balance and coordination
  5. Maintain clear airways
  6. Prevent lung infection
  7. Support joint in functional position to minimize damage or deformity
  8. Prevention of pressure sores
  9. Maintain peripheral circulation
  10. Provide psychological support for the patient and relatives.

Respiratory Care

The common respiratory complications in the rehabilitation setting include incomplete respiratory recovery including chronic obstructive pulmonary disease, restrictive respiratory disease (pulmonary scarring, pneumonia), and tracheitis from chronic intubation and respiratory muscle insufficiency. Sleep hypercapnia and hypoxia, which worsens during sleep can be the result of a restrictive pulmonary function.

Treatment methods are:

  • Night time saturation records with pulse oximeter and bilevel positive airway pressure (BiPAP) may be indicated for the patients.
  • Physical therapy measures (chest percussion, breathing exercises, resistive inspiratory training) may be required to clear respiratory secretions to reduce the work of breathing.
  • Special weaning protocol to prevent over fatigue of respiratory muscles can be recommended for more severe patients with tracheostomy. Patients with cranial nerve involvement need extra monitoring as they are more prone to respiratory dysfunction.
  • Patients should be encouraged to cease smoking.
  • Posturally drain areas of lung tissues, 2-hourly turning into supine or side lying positions.
  • 2-4 litre anesthetic bag can be used to enhance chest expansion. Therefore, 2 people are necessary for this technique, one to squeeze the bag and another to apply chest manipulation.
  • Rib springing to stimulate cough.
  • After the removal of a ventilator and adequate expansion, effective coughing must be taught to the patient.

Maintain Normal Range of Movement

Gentle passive movements through full ROM at least three times a day especially at hip, shoulder, wrist, ankle, feet.

Orthoses 

Use of light splints (eg. using PLASTAZOTE) may be required for the following purpose listed below:

  • Support the peripheral joints in comfortable and functional position during flaccid paralysis.
  • To prevent abnormal movements.
  • To stabilize patients using sandbags, pillows.

Prevention of Pressure Sores

2- hourly change in patients position from supine to side-lying. If the sores have developed then UVR or ice cube massage to enhance healing.

Maintenance of Circulation

  • Passive movements
  • Effleurage massage to lower limbs.

Relief of Pain

  • Transcutaneous electrical nerve stimulation
  • Massage with passive ROM
  • The patient can demonstrate increased sensitivity to light touch, a cradle can be used to keep the bedsheet away from the skin. Low-pressure wrapping or snug-fitting garments can provide a way to avoid light touch.
  • Reassurance and explanation of what to expect can help in the alleviation of anxiety that could compound the pain.

Strength and Endurance training

Strengthening exercises can involve isometric, isotonic or isokinetic exercises, while endurance training involves progressively increasing the intensity and duration of functional activities such as walking or stair-climbing.

Functional training

Retraining of dressing, washing, bed mobility, transfers, and ambulation activities comprise a big part of the rehabilitation process. Balance and proprioception retraining in all these functional activities should also be included, while motor control can be achieved by doing Proprioceptive Neuromuscular Facilitation (PNF) techniques.

Assistive devices

Assistive devices such as wheelchairs, walking sticks and quadrupods should be made available to individuals if required in order to facilitate safe and effective ambulation.

According to Bensman (1970), the following four guidelines are to be followed for the prescription of exercises:

  • Use short periods of non-fatiguing exercises matched to the patients strength.
  • Progression of the exercise should be done only if the patient improves or if there is no deterioration in status after a week.
  • Return the patient to bed rest if a decrease in muscle strength or function occurs.
  • The objective should be directed towards not only at improving function but also in improving strength.

*A study of 35 patients (27 with classic GBS and 8 with acute motor axonal neuropathy [AMAN]), reported GBS-related deficits included: neuropathic pain requiring medication therapy (28 patients) *foot drop necessitating ankle-foot orthosis (AFO) use (21 patients) *locomotion difficulties requiring assistive devices (30 patients) *At 1-year follow-up, the authors found continued foot drop in 12 of the AFO patients. However, significant overall functional recovery had occurred within the general cohort (LoE 1B).

Nehal and Manisha (2015) suggest a functional goal-oriented multidisciplinary rehabilitation programme for daily 1 hour sessions for 12 weeks. 

 

THOSE ABOVE ARE COLLECTED FROM SOME BOOKS AND WEBSITES..

THANK YOU,

 SRIKUMARAN PHYSIOTHERAPY CLINIC & FITNESS CENTER

Comments

Popular posts from this blog

முதுகு வலி மற்றும் முதுகு தண்டுவட வலி உள்ளவர்களுக்கு கடைபிடிக்க வேண்டிய சில வழிமுறைகள்....

  முதுகு வலி மற்றும் முதுகு தண்டுவட வலி உள்ளவர்களுக்கு கடைபிடிக்க வேண்டிய சில வழிமுறைகள் ....     பொதுவாக முதுகு வலி என்பது இன்றைய காலகட்டத்தில் பல பேருக்கு மிக அதிகமாகவே காணப்படுகிறது. இவ்வாறு வலி இருக்கும் பொழுது என்ன மாதிரியான வழிமுறைகளை கடைப்பிடிக்க வேண்டும் என்பதை கீழே விரிவாக பார்க்கலாம்.   பொதுவாக முதுகு வலி ஆரம்பிக்கும் பொழுது அவற்றை உதாசீனப்படுத்தாமல் அருகில் உள்ள மருத்துவரை அணுகி ஆலோசனை பெறுவது மிகவும் முக்கியம். மேலும் முதுகு வலி ஏற்படும் பொழுது அவற்றுக்கு தேவையான மருத்துவம்(medical management), இயன்முறை மருத்துவம்(physiotherapy treatment), பயிற்சிகள்(exercises) அல்லது அறுவை சிகிச்சை(surgery) மற்றும் புனர்வாழ்வு சிகிச்சைகள்(Rehabilitation) போன்றவை தேவைப்படலாம். மேலே கண்ட மருத்துவத்தில் ஏதாவது ஒன்றை எடுத்துக் கொள்ளும் பட்சத்தில் மேலும் முதுகு வலி வராமல் பாதுகாத்துக் கொள்ளவும், நமது அன்றாட வேலைகளை தொடர்ந்து செய்யவும், மருத்துவ உபகரணங்களை பயன்படுத்திக் கொள்ளவும்...

BRONCHIECTASIS

INTRODUCTION: Bronchiectasis means abnormal dilatation of the bronchi due to chronic airway inflammation and infection. It is usually acquired, but may result from an underlying genetic or congenital defect of airway defences. CAUSES: Congenital • Cystic fibrosis • Primary ciliary dyskinesia • Kartagener’s syndrome (sinusitis and transposition of the viscera) • Primary hypogammaglobulinaemia Acquired • Pneumonia (complicating whooping cough or measles) • Inhaled foreign body • Suppurative pneumonia • Pulmonary TB • Allergic bronchopulmonary aspergillosis complicating asthma • Bronchial tumours CLINICAL FEATURES: ● Chronic cough productive of purulent sputum.  ● Pleuritic pain. ● Haemoptysis.  ● Halitosis. Acute exacerbations may cause fever and increase these symptoms. Examination reveals coarse crackles caused by sputum in bronchiectatic spaces. Diminished breath sounds may indicate lobar collapse. Bronchial breathing due to scarring may be heard in advanced disease. INVESTIG...

லம்பார் ஸ்பாண்டிலோஸிஸ்(lumbar spondylosis)

  முன்னுரை ல ம்பார் ஸ்பாண்டிலோஸிஸ்(lumbar spondylosis) எனப்படும் மருத்துவ பிரச்சினைகள் என்பது முதுகுப் பகுதியில் ஏற்படும் நீண்ட நாள் முதுகு வலி. இவ்வாறு ஏற்படும் முதுகு வலி முதுகு முள்ளெலும்பு பகுதியில்(vertebral coloum) உள்ள தட்டு அழுத்தப் படுவதினால்(disk compression) அல்லது முள்ளெலும்பு பகுதியின பிரதான பகுதி சற்று இடம் நகர்வதால(displacement) முதுகு வலி ஏற்படுவதற்கு வாய்ப்புகள் உள்ளதாக கூறப்படுகின்றன. சில சமயங்களில் முதுகு தண்டு மற்றும் எலும்பு பகுதிகள் தொடர்சிதைவு(degeneration) ஆகும் போதும், முதுகெலும்பு தட்டு பகுதி, முதுகெலும்பு மூட்டு(facet joints) பகுதி தொடர்ந்து பிரச்சனைக்கு உள்ளாக்கப்படும் பொழுதும் முதுகு வலி ஏற்படுகிறது. ஸ்பாணடிலோஸிஸ் என்பதை முதுகு எலும்பு தேய்மானம்(osteoarthritis)  எ ன்று கூறலாம். இவ்வாறு முதுகு எலும்பு தேய்மானம்,  ல ம்பார்(lumbar vertebrae)  எனப்படும் கீழ் முதுகு எலும்பு பகுதிகள், மேல் முதுகு எலும்பு பகுதிகள்(thoracic vertebrae), மற்றும் கழுத்து முதுகெலும்பு(cervical vertebrae) பகுதிகள் போன்றவற்றை பாதிக்கலாம். பொதுவாக ஸ்பாண்டிலோசிஸ் எனப்படு...

CARDIAC REHABILITATION

  Introduction “Cardiac Rehabilitation is the process by which patients with cardiac disease, in partnership with a multidisciplinary team of health professionals are encouraged to support and achieve and maintain optimal physical and psychosocial health. The involvement of partners, other family members and carers is also important”. Cardiac rehabilitation is an accepted form of management for people with cardiac disease. Initially, rehabilitation was offered mainly to people recovering from a myocardial infraction (MI), but now encompasses a wide range of cardiac problems. To achieve the goals of cardiac rehabilitation a multidisciplinary team approach is required. The multidisciplinary team members include: Cardiologist/Physician and co-coordinator to lead cardiac rehabilitation Clinical Nurse Specialist Physiotherapist Clinical nutritionist/Dietitian Occupational Therapist Pharmacist Psychologist Smoking cessation counsellor/nurse Social worker Vocational counsellor Clerical Ad...

CARDIAC ARREST AND RESUSCITATION

INTRODUCTION: The leading causes of sudden death before old age, in people over the age of 44, are ventricular fibrillation from asymptomatic ischaemic heart disease or non-traumatic accidents such as drowning and poisoning. In people under the age of 38, the commonest causes are traumatic, due to accident or violence. In such instances death may be prevented if airway obstruction can be reversed, apnoea or hypoventilation avoided, blood loss prevented or corrected and the person not allowed to be pulseless or hypoxic for more than 2 or 3 minutes. If, however, there is circulatory arrest for more than a few minutes, or if blood loss or severe hypoxia remain uncorrected, irreversible brain damage may result. Immediate resuscitation is capable of preventing death and brain damage. The techniques required may be used anywhere, with or without equipment, and by anyone, from the lay public to medical specialists, provided they have been appropriately trained. Resuscitation may be divided in...

RELAXED POSITIONS FOR BREATHLESS PATIENTS

Relaxation positions for the breathless patient  If patients can be taught how to control their breathing during an attack of dyspnoea, this can be of great benefit to them. The patient should be put into a relaxed position, and encouraged to do ‘diaphragmatic’ breathing at his own rate. The rate of breathing does not matter at this stage; it is the pattern of breathing that is important. As the patient gains control of his breathing he should be encouraged to slow down his respiratory rate. Any of the following positions will assist relaxation of the upper chest while encouraging controlled diaphragmatic breathing. They can be adapted to various situations in everyday life. HIGH SIDE LYING  Five or six pillows are used to raise the patient’s shoulders while lying on his side. One pillow should be placed between the waist and axilla, to keep the spine straight and prevent slipping down the bed. The top pillow must be above the shoulders, so that only the head and neck are supp...

PARKINSON'S DISEASE

  Parkinson's EtiologyParkinson's disease (PD) is a neurodegenerative disorder that mostly presents in later life with generalized slowing of movements (bradykinesia) and at least one other symptom of resting tremor or rigidity. Other associated features are a loss of smell, sleep dysfunction, mood disorders, excess salivation, constipation, and excessive periodic limb movements in sleep (REM behavior disorder). PD is a disorder of the basal ganglia, which is composed of many other nuclei. The striatum receives excitatory and inhibitory input from several parts of the cortex. The key pathology is the loss of dopaminergic neurons that lead to the symptom .  It is the seconds most common neuro-degenerative condition in the world after Alzheimer's. The condition is caused by the slow deterioration of the nerve cells in the brain, which create dopamine. Dopamine is a natural substance found in the brain that plays a major role in our brains and bodies by messag...